Giới khoa học chế tạo thành công vật thể huỳnh quang rắn sáng đến mức không thể tin nổi
Phát minh này chắc chắn sẽ mở ra rất nhiều ứng dụng mới trong tương lai cho các công nghệ cần đến ánh sáng huỳnh quang.
Huỳnh quang là sự phát quang khi phân tử hấp thụ năng lượng dạng nhiệt (phonon) hoặc dạng quang (photon), và thường liên quan đến các chất lỏng hoặc chất khí. Tuy nhiên, mới đây các nhà nghiên cứu hóa học đã tạo ra 1 công thức mới, cho phép những vật thể, chất liệu rắn cũng sở hữu khả năng phát sáng huỳnh quang đến mức không thể tin nổi.
Cụ thể, nghiên cứu này được đăng tải trên tạp chí khoa học Chem số mới nhất, mô tả 1 loại vật chất mới được phát triển thành công với tên gọi là SMILES. Loại chất này có thể dễ dàng chuyển đổi sang trạng thái rắn, tinh thể với độ sáng huỳnh quang bất thường, thậm chí có thể phát sáng khi ở trong môi trường tia cực tím.
Được biết, công thức chế tạo loại vật chất này có thể mang đến rất nhiều ứng dụng mới, từ việc thu hồi năng lượng mặt trời và các tia laser ở trạng thái rắn, cho đến các công nghệ hiển thị hình ảnh sinh học và hình ảnh 3D. Về cơ bản, bất cứ kĩ thuật này cần đến ánh sáng huỳnh quang đều có thể hưởng lợi từ loại vật chất mới này.
Các nhà khoa học đã chế tạo thành công vật thể rắn với khả năng phát sáng huỳnh quang, với độ sáng bất thường đến không thể tin nổi.
Giới khoa học vẫn thường mô tả huỳnh quang là tập hợp các hóa chất có khả năng phát ra ánh sáng mà mắt thường nhìn thấy được sau khi hấp thụ những ánh sáng có bước sóng ngắn (ví dụ như tia cực tím). Như đã nêu trên, nó thường liên quan đến những loại chất lỏng hoặc khí. Tuy nhiên, nhà hóa học Amar Flood tại Đại học Indiana cho biết 2 trạng thái này lại không thực sự lý tưởng, bởi rất khó sản xuất cũng như lưu trữ. Suy cho cùng, khí và các loại chất lỏng thường có xu hướng bị rò rỉ, hao hụt nếu không không bảo quản kĩ càng.
Mặt khác, các vật thể rắn lại cho phép chúng ta “ đóng gói nhiều phân tử nhuộm huỳnh quang hơn trong 1 không gian nhỏ hơn, tiết kiệm diện tích hơn so với thể lỏng hoặc khí“. Amar lý giải rõ hơn cho nhận định của mình: “ Hãy thử tưởng tượng 1 viên đá lạnh rất nhỏ, khi tan ra thành nước nó có thể làm đầy 1 chiếc thìa (thể lỏng), và khi bốc hơi thể tích của nó thậm chí có thể bơm căng cho 1 quả bóng bãi biển nữa đấy (thể khí)“.
Video đang HOT
Ngoài ra, một điểm cộng nữa dành cho các vật chất thể rắn chính là mức độ chắc chắn. Amar cho biết: “ Chúng ta có thể hiểu rõ cấu trúc của các vật rắn là nhờ chúng được giữ nguyên, không chuyển động. Vì vậy, việc sử dụng thể rắn sẽ là lý tưởng hơn cả, bởi chúng ta có thể nắm quyền kiểm soát cấu trúc bên trong của chúng“.
Ở thể rắn, các nhà có thể nắm rõ và kiểm soát cấu trúc vật thể tốt hơn so với thể lỏng và khí.
Quá trình phát triển ra những vật liệu huỳnh quang ở thể rắn tương đối phức tạp và thường xuyên gặp phải tình trạng “dập tắt ánh sáng”. Cụ thể, khi chất nhuộm huỳnh quang sau khi chuyển sang thể rắn sẽ bị gắn vào với nhau và tạo ra ánh sáng lờ mờ. Lý do là bởi những chất nhuộm này sẽ không hoạt động như những chất liệu độc lập nữa. Amar cho biết không những gần như ngừng phát sáng, chúng còn đổi màu một cách cực kì khó lường.
Để khắc phục tình trạng trên, Amar cùng cộng sự Bo Laursen đến từ Đại học Copenhagen quyết định trộn thuốc nhuộm huỳnh quang với 1 dung dịch không màu có chứa cyanostar. Điều này sẽ giúp họ ngăn chặn được những phản ứng giữa các chất nhuộm huỳnh quang khác nhau và giữ nguyên vẹn tính chất ban đầu của mình trong quá trình chuyển sang thể rắn. Sản phẩm thu được cuối cùng là 1 cấu trúc giống như mạng tinh thể, trong đó các chất thuốc nhuộm huỳnh quang vẫn được bảo quản và cô lập hoàn toàn. Đó chính là lý do vì sao họ đặt tên cho nó là SMILES – small – molecule ionic isolation lattice (mạng lưới cách ly phân tử nhỏ). Sử dụng các vật chất SMILES này, Amar và Laursen đã in 3D một số vật thể (gọi là gyroid) với khả năng phát sáng trong môi trường tia cực tím.
Amar cho biết trước đây cũng đã từng có những vật liệu rắn huỳnh quang, nhưng tất cả đều hoạt động không ổn định, thường chỉ sử dụng được 1 lần mà thôi. Ông cũng chia sẻ: “ Chúng tôi khiến quá trình chế tạo này trở nên dễ dàng, đáng tin hơn bằng cách đưa ra những quy tắc thiết kế chuẩn mực nhất. Yếu tố quyết định chính là cyanostars, hợp chất không màu giúp tạo ra những cấu trúc như tinh thể, đồng thời cũng cô lập các chất nhuộm hình quang khác nhau giúp chúng không thể phản ứng hoặc dập tắt ánh sáng của nhau như trước“.
Các vật chất rắng này có thể phát sáng huỳnh quang ngay cả trong môi trường tia cực tím.
Trong một số bài thử nghiệm, các vật chất rắn huỳnh quang mới có thể phát ra ánh sáng mạnh gấp 30 lần so với cadmium selenua, chất được sử dụng trong chẩn đoán y tế. Trong thời gian tới, Amar cùng các cộng sự sẽ tiếp tục khám phá về đặc tính cơ học cũng như dung sai của loại chất liệu mới này để đưa ra những ứng dụng cụ thể nhất trong tương lai.
Việt Nam chế tạo thành công robot Vobot-1a phục vụ trong khu cách ly: Thay thế 3 5 nhân viên y tế, biết nói "cảm ơn", "tạm biệt", "xin tránh đường"
Sau hai tuần được Bộ Khoa học và công nghệ (KH&CN) đặt hàng, các nhà khoa học của Học viện Kỹ thuật quân sự đã cho ra đời phiên bản 1a của sản phẩm robot hỗ trợ y tế, đặt tên là Vibot.
Sáng 7/4, tổ chuyên gia do Bộ trưởng Bộ KH&CN thành lập đã họp đánh giá kết quả giai đoạn 1 nghiên cứu, chế tạo robot Vibot-1a với tỉ lệ 100% thành viên đồng ý thông qua và nhất trí kiến nghị Bộ Y tế xem xét cho phép sử dụng tại các cơ sở cách ly.
Robot Vibot phiên bản 1a có thể thuần thục đảm nhận nhiệm vụ tự động vận chuyển thức ăn, thuốc men, nhu yếu phẩm,... từ ngoài vào các buồng bệnh; vận chuyển rác thải sinh hoạt, rác thải y tế, đồ giặt,... từ buồng bệnh ra khu tập kết và hỗ trợ giao tiếp từ xa giữa nhân viên y tế và bệnh nhân.
Thiếu tướng Nguyễn Lạc Hồng, Phó Giám đốc Học viện Kỹ thuật Quân sự cho biết tải trọng của robot lên đến 100kg. Trong quá trình vận chuyển, robot có thể phát nhạc, phát bản tin giải trí. Bên cạnh đó, với cảm ứng thông minh, Vibot có thể phát ra nhiều âm thanh như "xin tránh đường", "xin cảm ơn", "tạm biệt".
Đặc biệt, các bác sỹ có thể tương tác với bệnh nhân thông qua hệ thống đường truyền được thiết lập riêng, có camera gắn trực tiếp trên robot, có chất lượng hình ảnh, âm thanh cao. Nhờ đó hạn chế tiếp xúc trực tiếp, hạn chế nguy cơ lây nhiễm chéo.
Mọi hoạt động của Hệ thống robot được giám sát, điều khiển bởi Trung tâm điều hành, tạo điều kiện cho việc mở rộng phạm vi hoạt động của robot hoặc bổ sung số lượng robot vào hệ thống khi cần thiết.
Theo ông, qua tính toán sơ bộ, mỗi robot có thể thay thế được 3-5 nhân viên y tế. Ngoài việc giảm rủi ro lây nhiễm, việc sử dụng robot còn tạo điều kiện để nhân viên y tế tập trung thời gian, công sức phục vụ, chăm sóc và điều trị bệnh nhân nặng được tốt hơn.
Ông Nguyễn Lạc Hồng cho biết thêm, sau khi hoàn thành phiên bản Vibot-1a, nhóm nghiên cứu robot của Học viện đang tiếp tục nâng cấp và cải tiến các tính năng để robot có thể hoạt động hoàn toàn tự động và thông minh hơn, hướng tới mục tiêu chế tạo được Vibot có tính năng hiện đại như robot TUG của hãng Aethon, Mỹ.
Hiện nay, robot Vibot-1a đã được lắp đặt, chạy thử nghiệm tại môi trường thực tế và nhận được phản hồi tốt tại Bệnh viện Bắc Thăng Long, Hà Nội (nơi được quy hoạch để cách ly, điều trị các bệnh nhân Covid-19 khi dịch bùng phát).
Theo GS.TS Nguyễn Văn Kính, Chủ tịch Hội Truyền nhiễm Việt Nam, nguyên Giám đốc Bệnh viện bệnh Nhiệt đới Trung ương, sản phẩm đã đáp ứng được bước đầu nhu cầu hỗ trợ điều trị COVID-19, giúp giảm tải công việc cho đội ngũ y bác sỹ, giảm tiếp xúc trực tiếp với người nhiễm bệnh, người nghi nhiễm bệnh, qua đó giảm lây nhiễm chéo.
GS.TS Đào Văn Hiệp - Tổ trưởng tổ chuyên gia do Bộ trưởng Bộ KH&CN thành lập cho biết, đề tài chia thành hai giai đoạn. Giai đoạn đầu là hình thành sản phẩm để phục vụ cho khu cách ly nên công nghệ mới chỉ ở mức vừa phải, nghĩa là mới chỉ là robot tự hành.
Giai đoạn hai sẽ tiếp cận với trình độ cao hơn đó là robot thông minh, việc di chuyển không phụ thuộc vào vạch chỉ đường mà phải theo bản đồ nạp sẵn hoặc robot tự xây dựng được bản đồ hoạt động của mình. Sau nay robot không phải hoạt động một con mà hoạt động theo một nhóm robot lúc đó trung tâm điều khiển phải điều khiển được cả một nhóm robot, các robot có thể tương tác với nhau mà không phụ thuộc vào trung tâm điều khiển...
Hà Thu
Elon Musk từng mơ làm nhà nghiên cứu vật lý Elon Musk, lúc còn là học sinh trung học, rất giỏi vật lý và khoa học máy tính. Khi đó, Musk từng nghĩ khi trưởng thành ông sẽ nghiên cứu vật lý và làm việc với các máy gia tốc hạt - một loại máy đẩy các hạt tích điện, như proton hoặc electron, ở tốc độ cao, gần với tốc độ của...